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Abstract. A new non-local integrable chain with continuous time and discrete space variable
is considered. In contrast to the case of Toda and Volterra chains, the general solution can be
presented in explicit form in terms of two arbitrary sequences. It is shown that this solution is
connected with the so-called Uvarov–Chihara problem (inserting a discrete mass at the centre
of the spectral interval of symmetric orthogonal polynomials). The asymptotic behaviour of the
recurrence coefficients of such polynomials is considered.

1. Introduction

Consider a systemPn(x) of symmetric orthogonal polynomials satisfying the recurrence
relation

Pn+1+ unPn−1 = xPn n = 1, 2, . . . (1.1)

with the initial conditions

P0 = 1 P1 = x. (1.2)

Then equation (1.1), together with (1.2), defines a system of monic polynomials

Pn(x) = xn +O(xn−2). (1.3)

If all un > 0, there exists an even weight functionw(x) such that (see, e.g., [1, 2])∫ a

−a
Pn(x)Pm(x)w(x) dx = hnδnm (1.4)

where the integral is understood to be of Stieltjes type (i.e. the measure dµ(x) = w(x) dx
may contain continuous, discrete and singular continuous parts; in two last casesw(x)

involves Diracδ-functions). The spectral interval may be either finite or infinite:a 6 ∞.
The normalization constants areh0 = 1, hn = u1u2 · · · un.

Assume that the recurrence coefficientsun(t) are functions of the timet—an additional
parameter. Thus the polynomialsPn will also be functions oft . We shall indicate this by
using the notationPn(x; t) (as usual,ḟ will stand for the time derivative of a functionf ).
Then obviously we have the following expansion:

Ṗn(x; t) = C(n)n−2(t)Pn−2(x; t)+ · · · + C(n)n−2k(t)Pn−2k(x; t)+ · · · (1.5)

where the last term is proportional to∼ P0 for n even and∼ P1 for n odd. Clearly, the
coefficientsC(n)k (t) in the expansion (1.5) define the time dynamics ofun(t) andPn(x; t).
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It is of interest to consider the integrable cases of such systems and thus to determine the
coefficientsC(n)k (t) for which the recurrence relation (1.1) will be valid for all values oft .

Such a problem is well known in the mathematical physics literature and is referred to
as the ‘Volterra hierarchy’ problem (see, e.g. [3]). For example, if we restrict ourselves to
the simplest case

Ṗn(x, t) = Cn−2(t)Pn−2(x; t) (1.6)

the compatibility condition of (1.1) and (1.6) yields

Cn−2(t) = −unun−1 (1.7)

(up to an arbitrary constant factor) leading to the well known Volterra chain

u̇n = un(un+1− un−1). (1.8)

The weight function of the corresponding polynomials is

w(x; t) = κ(t)w(x; 0) exp(x2t) (1.9)

where the normalization factorκ(t) is such that the conditionh0(t) = h0(0) = 1 is satisfied.
If in addition one allows the term proportional toPn−4 in (1.5), then one obtains a more

complicated equation forun containing the termsun−2, un−1, . . . , un+2. In general, keeping
terms up to ordern − 2k in (1.5), one obtains an equation forun containing the terms
un−k, . . . , un+k. What happens, then, if all terms in (1.5) are retained? Obviously, one then
obtains anon-local equation forun. Here we present one such a system with very simple
properties; it turns out to be related to the Uvarov problem [4], which is concerned with
how to add a discrete mass to an initial weight function of the orthogonal polynomials.

2. The integrable system and its solutions

We introduce the following ansatz for the time dynamics ofPn:

Ṗ2n+1 = 0 Ṗ2n = rnx−1P2n−1 (2.1)

where thern are some coefficients depending ont . It can easily be seen that equation (2.1)
is a special case of the Volterra hierarchy (1.5). Indeed, using the Christoffel–Darboux
formula [1, 2]

Pn(x)Pn−1(y)− Pn(y)Pn−1(x)

(x − y)hn−1
=

n−1∑
k=0

Pk(x)Pk(y)

hk
(2.2)

settingy = 0 and taking into account the fact thatP2n+1(0) = 0 for symmetric polynomials,
we can rewrite (2.1) in the form

Ṗ2n(x) =
n−1∑
k=0

C
(n)

2k P2k(x) (2.3)

where

C
(n)

2k =
rnh2n−2P2k(0)

h2kP2n−2(0)
(2.4)

where

P2n(0) = (−1)nu1u3 · · · u2n−1. (2.5)

Since allC(n)2k are generally non-zero, we deal with non-local equations forun. These
equations are straightforwardly derived from (2.1) and (1.1):

u̇2n = rn u̇2n+1 = −rn+1 (2.6)
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where the coefficientsrn(t) satisfy the relations
rn+1

rn
= u2n+1

u2n
. (2.7)

From equations (2.7) we find the explicit expression forrn:

rn = r1u3u5 · · · u2n−1

u2u4 · · · u2n−2
n = 2, 3, . . . (2.8)

wherer1(t) is an arbitrary function of time. Without loss of generality we can choose

r1 = 1. (2.9)

(Making other choices forr1(t) merely correspond to changing of the variablet .)
In spite of its non-locality, the system (2.6) looks much simpler than the Volterra

equation (1.8). Moreover, its general solution can be constructed explicitly.
Indeed, consider the first four equations of the system (2.6) (taking into account the

condition (2.9))

u̇1 = −1 u̇2 = 1 u̇3 = −u3

u2
u4 = u3

u2
. (2.10)

Their solutions are

u1(t) = u1(t0)− t + t0 u2(t) = u2(t0)+ t − t0

u3(t) = u2(t0)u3(t0)

u2(t0)+ t − t0 u4(t) = u4(t0)+ u3(t0)− u2(t0)u3(t0)

u2(t0)+ t − t0
(2.11)

whereui(t0) are the values of the recurrence coefficients att0. It is obvious that all other
coefficientsun(t) can be found in a similar (step-by-step) manner from (2.6).

There is, however, a more systematic way to find the general solution of the system (2.6).
Indeed, note that the system (2.6) admits the two integrals of motion

Dn = u2n(t)u2n+1(t) En = −u2n+1(t)− u2n+2(t) (2.12)

whereDn, En do not depend ont .
From equations (2.12) we find the discrete Riccati equation foru2n:

Dn

u2n
+ u2n+2 = −En. (2.13)

This equation is linearized by the substitution

u2n = ϕn

ϕn−1
(2.14)

and we obtain a discrete Schrödinger equation (without a spectral parameter) forϕn:

ϕn+1+ Enϕn +Dnϕn−1 = 0. (2.15)

SinceDn andEn do not depend on time, we can choose two linearly independent solutions
ξn andηn which are independent oft . The general solution can then be written as

ϕn(t) = A1(t)ξn + A2(t)ηn (2.16)

whereA1,2(t) are two arbitrary functions. Hence we obtain

u2n(t) = ξn + f (t)ηn
ξn−1+ f (t)ηn−1

(2.17)

wheref (t) = A2(t)/A1(t).
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From equations (2.12) we find

u2n+1(t) = Dn

ξn−1+ f (t)ηn−1

ξn + f (t)ηn . (2.18)

Equations (2.17) and (2.18) yield the general solution of (2.6), and moreover forrn we
obtain the expression

rn = u̇2n = ḟ (t)Wn

(ξn−1+ f (t)ηn−1)2
(2.19)

where

Wn = ηnξn−1− ηn−1ξn (2.20)

is the discrete Wronskian obeying the relation

Wn+1

Wn

= Dn. (2.21)

The functionf (t) is determined from (2.19) using the conditionr1 = 1:

f (t) = η−1
0

(
ω

t − c − ξ0

)
(2.22)

where

ω = ξ1− η1ξ0

η0
(2.23)

andc is an arbitrary constant (defining the valuef (t0)).
We thus arrive at the following result.

Proposition 1.Let ξn andηn be two arbitrary sequences subject to the condition that

Wn 6= 0 for all n. (2.24)

Equations (2.17), (2.18) yield the general solution of the system (2.1) forr1 = 1, and with
Dn andf (t) defined in (2.21) and (2.22).

Note that the complete integrability of the system (2.1) is an obvious consequence of
the fact that the spectral parameterx does not depend ont . Hence there are infinitely many
integrals of motion of the typeIk = Tr(Lk) where the difference operatorL is defined by

L|0〉 = u1|1〉 L|n〉 = un+1|n+ 1〉 + |n− 1〉 (2.25)

for some basis|n〉, n = 0, 1, . . . .

3. The time dependence of the weight function

In this section we find the time dependence of the weight functionw(x; t) of the polynomials
Pn(x; t).
Proposition 2.Assume thatw(x; t0) 6= 0. Then the weight function has the following
dependence on time:

w(x; t) = (1− J (t))w(x; t0)+ J (t)δ(x) (3.1)

where the functionJ (t) is

J (t) = 1− exp

(
−
∫ t

t0

dτ

u1(τ )

)
. (3.2)
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Proof. From the orthogonality relation we have∫ a

−a
P2n+2(x; t)ẇ(x; t) dx = −rn+1(t)

∫ a

−a
x−1P2n+1w dx. (3.3)

On the other hand, from the Christoffel–Darboux formula (2.2) we have

P2n+1(x)

x
= h2n

P2n(0)

n∑
k=0

P2k(x)P2k(0)

h2k
. (3.4)

Taking into account equation (2.5), from equations (3.3) and (3.4) forany even polynomial
we obtain the identity∫ a

−a
P2n+2(x; t)ẇ(x; t) dx = P2n+2(0; t)

u1(t)
. (3.5)

Moreover ∫ a

−a
ẇ(x; t) dx = 0 (3.6)

sincew(x; t) is normalized. Hence from (3.5) and (3.6) we arrive at the formula

ẇ(x; t) = δ(x)− w(x; t)
u1(t)

. (3.7)

We introduce the functions

F(t) = exp

(
−
∫ t

t0

dτ

u1(τ )

)

H(t) =
∫ t

t0

dτ

F (τ)u1(τ )
.

Then the general solution of equation (3.7) is written as

w(x; t) = F(t) (H(t)δ(x)+ w(x; t0)) . (3.8)

Using the explicit expression (2.11) foru1(t) we obtain

F(t) = u1(t0)+ t0− t
u1(t0)

H(t) = t − t0
u1(t0)+ t0− t . (3.9)

We then arrive at equation (3.1), where

J (t) = 1− F(t) = t − t0
u1(t0)

. (3.10)

Thus we have proved the proposition. As a byproduct we have obtained the result thatJ (t)

is a linear function in the timet , equation (3.10). Note also that the normalization condition∫ a

−a
w(x; t) dx = 1 (3.11)

is fulfilled automatically for all values oft , as can be seen from (3.1).
The converse statement is also valid. �

Proposition 3.Let Pn(x; t) be a system of symmetric orthogonal polynomials whose weight
function is defined by (3.1) with the functionJ (t) defined by (3.2), then equations (2.1) are
valid.

We will not prove this statement, because it is a direct consequence of the so-called
Uvarov–Chihara transformation for orthogonal polynomials to be considered in section 4.
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4. Connection with the Uvarov–Chihara problem

The system (2.1) is closely related to the so-called Uvarov–Chihara problem [4, 5] of how
to insert a discrete massM in a given weight function of the orthogonal polynomialsPn(x).
In our case we deal with the special case (considered in detail by Chihara [5]): how to insert
a massM at the origin (i.e. the centre of the spectral interval) for symmetric orthogonal
polynomials. In this section we recall some results of [4, 5] using Uvarov’s method [4].

Assume that the symmetric monic polynomialsPn(x) have (the normalized) weight
functionw(x), whereas the polynomials̃Pn(x) have the weight function

w̃(x) = (1− J )w(x)+ Jδ(x) (4.1)

with J some constant. Obviously, the weight functioñw(x) is also normalized∫ a
−a w̃(x) dx = 1. Note also that the weight functioñw(x)/(1 − J ) differs from w(x)

by the massM = J/(1− J ) inserted at the centrex = 0 of the spectral interval.
We can present the polynomials̃Pn(x) as a superposition of the polynomialsPn(x):

P̃n(x) = Pn(x)+
n−1∑
k=0

C
(n)
k Pk(x) (4.2)

where theC(n)k are some coefficients to be determined. From the orthogonality relation we
have

C
(n)
k hk =

∫ a

−a
P̃n(x)Pk(x)w(x) dx

=
∫ a

−a
P̃n(x)Pk(x)

(
w̃(x)− Jδ(x)

1− J
)

dx = J

J − 1
P̃n(0)Pk(0) (4.3)

(the last equality is due to orthogonality of the polynomialsP̃n(x) with respect toany
polynomial of a lesser degree (say,Pk(x))). For symmetric orthogonal polynomials
P̃2m+1(0) = P2k+1(0) = 0. Hence we have

C
(n)

2m+1 = C(2m+1)
k = 0. (4.4)

This means in particular that

P̃2n+1(x) = P2n+1(x) (4.5)

i.e. that the polynomials with odd degree remain unchanged under the Uvarov–Chihara
transformation. For the polynomials with even degree we have the following expansion
from (4.3):

P̃2n(x) = P2n(x)+MP̃2n(0)
n−1∑
k=0

P2k(0)P2k(x)

h2k
. (4.6)

Using the Christoffel–Darboux formula (2.2) we can rewrite the right-hand side of (4.6) in
the form

P̃2n(x) = P2n(x)−MP̃2n(0)
P2n(0)P2n−1(x)

xh2n−1
= P2n+1(x)+ ũ2nP2n−1(x)

x
(4.7)

where we introduced the new recurrence coefficients

ũ2n = u2n −M P̃2n(0)P2n(0)

h2n−1
. (4.8)
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Relations (4.7) and (4.8) follow from the recurrence relation

xP̃2n(x) = P̃2n+1(x)+ ũ2nP̃2n−1(x) = P2n+1(x)+ ũ2nP2n−1(x). (4.9)

In order to findP̃2n(0) we setx = 0 in (4.7):

P̃2n(0) = P2n(0)

1+M(P2n(0)P ′2n−1(0)/h2n−1)
. (4.10)

Thus for the recurrence coefficients we obtain

ũ2n = u2n − P 2
2n(0)

P2n(0)P ′2n−1(0)+ h2n−1/M
. (4.11)

From the recurrence relations forPn(x) and P̃n(x) we easily find that

ũ2nũ2n+1 = u2nu2n+1 ũ2n−1+ ũ2n = u2n−1+ u2n. (4.12)

From equation (4.11) and the last relation of (4.12) we obtain the following expression for
the recurrence coefficients with odd indices:

ũ2n−1 = u2n−1+ P 2
2n(0)

P2n(0)P ′2n−1(0)+ h2n−1/M
. (4.13)

Equations (4.11), (4.13) and (4.7) thus yield the complete solution of the Uvarov–Chihara
problem. Note that ifM → 0, thenũn→ un as expected.

Note that forP ′2n+1(0) we have the recurrence relation

P ′2n+1(0)+ u2nP
′
2n−1(0) = P2n(0) = (−1)nu1u3 · · · u2n−1 (4.14)

whence one obtains the following expression:

P ′2n+1(0) = (−1)nu2u4 · · · u2n

(
1+

n∑
k=1

u1u3 · · · u2k−1

u2u4 · · · u2k

)
. (4.15)

Returning to our integrable system, we can introduce the time variablet by means of
the relation (see equation (3.10))

J (t) = t − t0
u1(t0)

(4.16)

in such a manner thatJ (t0) = 0, i.e. for t = t0 we have the ‘unperturbed’ polynomials
Pn(x), whereas for other values oft we haveP̃n(x). This leads to proposition 3.

It is useful to rewrite the formulae providing the solution of the Uvarov–Chihara problem
in a time evolution form:

P2n+1(x; t) = P2n+1(x; t0)

P2n(x; t) = P2n+1(x; t0)+ u2n(t)P2n−1(x; t0)
x

(4.17)

where the time dependence of the recurrence coefficients is given by the formulae

u2n(t) = u2n(t0)− P 2
2n(0; t0)

P2n(0; t0)P ′2n−1(0; t0)+ h2n−1(t0)/M(t)
(4.18)

u2n−1(t) = u2n−1(t0)+ P 2
2n(0; t0)

P2n(0; t0)P ′2n−1(0; t0)+ h2n−1(t0)/M(t)
. (4.19)
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Note that the time dependence on the right-hand sides of (4.18) and (4.19) is contained only
in M(t):

M(t) = t − t0
u1(t0)− t + t0 . (4.20)

We can now compare equations (4.18), (4.19) with equations (2.17) and (2.18) which present
the same solution in slightly different forms. It can easily be found that the sequencesξn
andηn must be

ξn−1 = (−1)nP ′2n−1(0; t0) (4.21)

ηn−1 = (−1)n
h2n−1(t0)

P2n(0; t0) = u2u4 · · · u2n n > 2 (4.22)

with initial valuesη0 = −ξ0 = 1. As for the functionf (t) in (2.17), (2.18), we have the
expression

f (t) = 1

M(t)
= − t − t0− u1(t0)

t − t0 . (4.23)

Thus we have related the sequencesξn, ηn and the functionf (t) (giving the arbitrary
solution of our integrable system) to the parameters of the corresponding orthogonal
polynomialsPn(x; t0).

5. Asymptotics of the recurrence coefficients

It is well known that there are some necessary conditions for a Schrödinger potentialu(x)
to possess a discrete level inside a continuous spectrum (see, e.g., [6]:

(i) u(x) should be oscillating inx;
(ii) u(x) should tend to zero as∼ 1/x.

We shall show that similar conditions are necessary for the symmetric orthogonal
polynomials to have a discrete level at the centre of the spectral interval.

Indeed, let us assume that the ‘initial’ polynomials (fort = t0) have the following
asymptotics for the recurrence coefficients

un − 1= O

(
1

n3

)
. (5.1)

Condition (5.1) guarantees that the spectral interval is [−2, 2] (apart from a possible finite
number of discrete masses outside this interval)—see, e.g., [7]. Then from equations (2.17),
(2.18), we find that asymptotically(n→∞)

ηn ∼ constant Wn ∼ constant ξn ∼ αn+ β (5.2)

whereα, β are some constants. Hence from equations (2.17), (2.18), for the coefficients
we have

u2n ∼ 1+ 1

n
u2n+1 ∼ 1− 1

n
. (5.3)

We see that conditions (i) and (ii) for the discrete potentials can be expressed in the form:

(i) the potentialsun oscillate about 1;
(ii) |un − 1| ∼ 1/n.
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It is interesting to note that the asymptotic behaviour (5.3)does not dependon the value of
the massJ . This dependence only appears in the next approximation O(1/n2). Hence the
insertion of any small discrete massM into the centre of spectral interval leads to drastic
change in the asymptotic behaviour of the recurrence coefficients (|un − 1| ∼ 1/n instead
of |un−1| ∼ 1/n3 as expected for sufficiently ‘good’ potentialsun), giving rise to a purely
continuous spectrum on the interval [−2, 2].

It is not clear whether the conditions (5.3) aresufficient for the existence of a discrete
mass inserted at the centre of the spectral interval.

6. Some explicit examples

Equations (2.17), (2.18) allow one to construct many explicit examples starting from two
arbitrary sequencesξn andηn. However, if we wish to start from polynomials having strictly
[−2, 2] as the spectral interval, one should then impose restrictions such as (5.2) to these
sequences.

The first possibility is to take the conditions (5.2) asexact for all n = 0, 1, . . . . Namely
to set

ξn = αn+ β ηn = η (6.1)

with η, α, β some constants. From the initial conditionsξ0 = −1, η0 = 1 we find
that η = 1, β = −1. Moreover, from relations (4.21) and (4.22) we easily find that the
recurrence parameteru1(t0) can be chosen arbitrarily, thenα = −u1(t0) and all subsequent
recurrence parameters are identical

u2(t0) = u3(t0) = · · · = 1. (6.2)

The orthogonal polynomialsPn(x; t0) corresponding to the recurrence parameters (6.2) (with
arbitrary u1) were considered by Geronimus [8] who showed that foru1 > 2 the weight
function for these polynomials can be written in the form

w(x; t0) = e−ω coshω

π

( √
4− x2

4 cosh2ω − x2
+ π tanhω

(
δ(x − x0)+ δ(x + x0)

))
(6.3)

where e2ω = u1− 1 andx0 = 2 coshω. This means that the weight function (6.3) contains
a continuous part on the interval [−2, 2] and two additional masses located at the points
±x0 beyond this interval.

The polynomialsPn(x; t0) have a simple explicit expression in terms of the Chebyshev
polynomialsUn(x) of the second kind [8]:

Pn(x; t0) = Un(x)− (u1(t0)− 1)Un−2(x) (6.4)

where the monic Chebyshev polynomials are defined as

Un(x) = sin(θ(n+ 1))

sinθ
x = 2 cosθ. (6.5)

(In order for equation (6.4) to be valid forn = 0, 1 we should defineU−k(x) = 0). It is
clear that the caseu1(t0) = 1 corresponds to the Chebyshev polynomialsUn(x) whereas the
caseu1(t0) = 2 corresponds to the Chebyshev polynomialsTn(x) of the first kind.

Upon performing the Uvarov–Chihara transformation we can introduce the time
variablet in such a way that the new recurrence coefficients will be

u2n(t) = (t − t0)n+ 1

(t − t0)(n− 1)+ 1

u2n+1(t) = 1

u2n(t)
n = 1, 2, . . . u1(t) = β − t + t0

(6.6)
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with β = u1(t0) > 2 an arbitrary parameter. According to the previous considerations
we conclude that the weight function for the polynomialsPn(x; t) with the recurrence
coefficients (6.6) differs from the weight function (6.3) by the presence of the mass
M(t) = (t − t0)/(β − t + t0) inserted atx = 0.

From equations (6.6) we find the asymptotic behaviour of the recurrence coefficients
for largen:

u2n = 1+ 1

n
+ t − 1

tn2
+O

(
1

n3

)
u2n+1 = 1− 1

n
+ 1

tn2
+O

(
1

n3

) (6.7)

where we have putt0 = 0 for simplicity. We see from (6.7) that the first two terms of the
expansions do not contain the massM (or, equivalently, the time parametert) in accordance
with the general result (5.3). This dependence appears only in the terms∼ 1/n2.

Note that the casesβ = 1 andβ = 2 correspond to the Chebyshev polynomialsUn(x)
andTn(x), respectively. In these special cases equations (6.6) (corresponding to the insertion
of a discrete mass at the centre of the spectral interval) were obtained previously in [5, 9].

Another example is obtained if one takes the Hermite polynomials

Hn+1+ nHn−1 = xHn. (6.8)

In this case

hn = n! H2n(0) = (−1)n(2n− 1)!! H ′2n+1(0) = (−1)n(2n+ 1)!! (6.9)

and using (4.18), (4.19) we obtain

u2n(t) = (t − 1)(2n)!! − t (2n+ 1)!!

(t − 1)(2n− 2)!! − t (2n− 1)!!

u2n+1(t) = 2n(2n+ 1)

u2n(t)

(6.10)

where we have putt0 = 0. Using Stirling’s formula we find the following asymptotic
behaviour for largen:

u2n(t) = 2n

(
1+ 1

2n
+
√
π(t − 1)

4tn3/2
+O

(
1

n2

))
u2n+1(t) = (2n+ 1)

(
1− 1

2n
−
√
π(t − 1)

4tn3/2
+O

(
1

n2

))
.

(6.11)

Again, as in the case of finite orthogonality interval, the value of the discrete mass only
appears in the third terms of the approximation.

7. Connection with the Darboux transformation

In this section we show that the Uvarov–Chihara problem (as well as the solution of our
integrable chain) is connected with the so-called Darboux transformations for orthogonal
polynomials. Recall that the Darboux transformation (DT) for the discrete Schrödinger
equation (DSE)

ψn+1+ unψn−1 = xψn (7.1)

is defined [10–13] by

ψ̃n = (ψn + Anψn−2)F (x) (7.2)



The Uvarov–Chihara problem for orthogonal polynomials 9589

whereF(x) is an arbitrary function of the spectral parameterx and where the coefficientsAn
obey the nonlinear recurrence relation

An−1(An+1− un) = An(An−1− un−2). (7.3)

The functionψ̃n obeys the DSE (7.1) with the same eigenvaluex, but with another potential,
namely

ũn = un−2
An

An−1
. (7.4)

So far, the eigenfunctionsψn are arbitrary; interesting possibilities arise if one demands
that bothψ̃n andψn be orthogonal polynomials inx. In [11, 12] we considered two such
possibilities:

1. ψn = Pn(x) ψ̃n = P̃n(x) F (x) ≡ 1.

(This transformation was first considered by Geronimus [14]);

2. ψn = Pn(x) ψ̃n = P̃n−2(x) F (x) = 1

(x2− µ2)

whereµ is a constant outside the spectral interval. This transformation is well known as
the Christoffel transform of orthogonal polynomials [1]. It also corresponds to passing to
kernel polynomials (for details see [2]).

In both cases 1 and 2, provided that both the left- and right-hand sides of (7.3) are
non-zero, equation (7.3) can be integrated once:

(An+1− un)(An − un−1) = −µ2An (7.5)

with the constantµ playing the role of the integral of (7.3), In these cases we can linearize
equation (7.5) by using the substitution

An = − ϕn

ϕn−2
(7.6)

whereϕn is any solution of the DSE withµ as auxiliary spectral parameter

ϕn+1+ unϕn−1 = µϕn. (7.7)

More precisely, in case 2ϕn = Pn(µ).
Consider transformation of the weight functions under the Geronimus and Christoffel

transformations. Letw(x) be the weight function for the polynomialsPn(x). Then under
the Geronimus transformation [14] we have (up to an inessential common factor)

w̃(x) = w(x)

(x2− µ2)
+ J

2

(
δ(x − µ)+ δ(x + µ)) (7.8)

whereJ is some constant specifying the masses added at the points±µ; the arbitrariness
of J is connected to the arbitrariness in the choice of the solutionϕn. In the case of
Christoffel transformation[2] we have

w̃(x) = w(x)(x2− µ2). (7.9)

It turns out that transformations 1 and 2 are reciprocal, as can easily be seen from
equations (7.8) and (7.9).

There is yet another possibility for obtaining new orthogonal polynomials through the
DT (7.2). Indeed, consider the choice

3. ψn = Pn(x) ψ̃n = Pn−1(x) F (x) = 1

x
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or, explicitly

P̃n(x) = (Pn+1+ An+1Pn−1)

x
. (7.10)

Since bothPn(x) and P̃n(x) must be symmetric orthogonal polynomials, we have

A2n+2 = −P2n+2(0)

P2n(0)
= u2n+1. (7.11)

Hence from equations (7.11) and (7.10) we find

P̃2n+1(x) = P2n+1(x). (7.12)

Analogously, settingn = 2k in (7.10) and using (7.12) we arrive at the relation

P̃2n(x) = P2n+1(x)+ ũ2nP2n−1(x)

x
. (7.13)

We can then identify equations (7.12) and (7.13) with equations (4.5) and (4.7) to obtain
a solution of the Uvarov–Chihara problem. The Uvarov–Chihara problem is thus equivalent
to this third type of Darboux transformation for symmetric orthogonal polynomials.

Finally, note that there is one more type of DT withµ = 0:

P̃n = (Pn+2+ AnPn)
x2

. (7.14)

It can easily be seen from (7.14) (whenx = 0) that the coefficients can be found explicitly:

A2n = u2n+1 A2n−1 = −
P ′2n+1(0)

P ′2n−1(0)
. (7.15)

The transformation (7.14) corresponds to the following transformation of the weight
function:

w̃(x) = x2w(x). (7.16)
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